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THE ANDERSON-DARLING STATISTIC

1. Introduction.

The Anderson Darling Statistic is a member of the group of
Goodness—of-Fit statistics which has come to be known as EDF statistics
(Stephens, 1974) because they are based on a comparison of the empirical
distribution function of a given sample with the theoretical distribution
to be tested. It is designed to test that random variable X has a continuous
cumulative distribution F(x;6); @ is a vector of one or more parameters
entering into the distribution function. Thus for the normal distribution,
the vector 6 = (u,cg).

The empirical distribution function (EDF) is defined as

number of sample values < X
n

Fn(X) = P)

where the n values Xy Xpy ey X, aTE assumed to be a random sgmple
of X. From the X5 let X(l)’ x(g), 500¢ X(n) be the order statistics,

in ascending order. Fan) is then defined by

Fn(x) = 0 ; x < x(l)
Fn(x) = i/n , x(i) < x < x(i+l)' i=1,...,(n-1)
Fn(x) = 1 E x(n) < xX.

Since Fn(x) gives the proportion of a random sample < x , one might expect
it to give a good estimate of F(x3;6), which is the probability of X less
than x, and Fn(x) is in fact a consistent estimator. It is therefore
natural to test whether the sample appears to come from F(x;6) by using

a statistic based on the discrepancy between Fn(x) and F(x;6).



Many statistics of this type have been proposed, the most famous, and
one of the oldest, being the Kolmogorov statistic D. This statistic
is based on the largest vertical discrepancy between the two functions.
An alternative measure is the Cramer-von Mises family, based on the
squared integral of the difference between the EDF and the distribution

tested:

* o o)

W o= {Fn(x)-F(x;G)J v(x) d&x ; (1)
F =00

the function Y (x) gives a weighting to the squared difference. One

member of W* is the Cramer-von Mises statistic itself, W' with

vix) = 1.

The Anderson Darling statistic, the subject of this article, is

W with
v(x) = [(F(x;0)M1-Fx;0)}17T .

This weight function counteracts the fact that the discrepancy
between Fn(x) and F(x;6) 1is necessarily becoming smaller in the tails,
since both approach O and 1 at the extremes. The weight function
given weights the discrepancy by a factor inversely proportional to its
variance, and has the effect of giving greater importance to observations
in the tail than do most of the EDF statistics. Since tests of fit are often
needed implicitly or explicitly to guard against wayward observations in the

tails, the statistic is a recommended one, with, as we shall see, generally



good power properties over a wide range of alternative distributions when

F(x;6) is not the true distribution.

2. Computing Formula,

For practical purposes, the definition of the Anderson-Darling
Btatistic given above needs to be turned to a computational formula.

This is done in the following sequence of steps:
(a) Calculate z; = F(x(i);e), i=1,0..,0.

(b) The Anderson-Darling statistic is given by

n
g —{izzzl(Qi—l)[ln z, +1n(l-z o ;)]}/n-n . (2)

Note that since the X(i) are in ascending order, the Zi will

also be in ascending order, though the usual notation of order statistics

has been omitted.

DE Goodness-of-fit test for a completely specified continuous distribution.

The formula for z, above assumes that the tested distribution F(x;0)
is completely specified, i.e., the mrameters in 6 must be known. Uhen
this is the case we describe the situation as Case 0. The statistic A?
was introduced by Anderson and Darling (1952, 1954), and for Case O they
gave the asymptotic distribution and tables of percentage points. For
testing purposes the upper tail of A? will be used; large discrepancies
between the EDF and the tested distribution will indicate a bad fit.

Later, Lewis (1961) demonstrated that the distribution of A? for a finite
sample approaches the asymptotic distribution extremely quickly, so that

for practical purposes only the asymyptotic distribution is required for



sample sizes greater than 5. A table of percentage points is given in
Table 1. To make the goodness of fit test, A? is calculated as in
Equation (2) above, and compared with these percentage points;

the mull hypotheses that random variable X has the distribution F(x;6)
is rejected at level & 1if A? exceeds the appropriate percentage

point at this level.

4.,  Asymptotic theory of the Anderson-Darling statistic.

The distribution of A? for Case O is the same for all distributions
tested. This is because the probability integral transformation is made
at step (a) and the values of z; are ordered values from a uniform distri-
bution with limits O and 1. A? ig therefore a function of ordered
uniform random variables. The asymptotic distribu£ion theory for this
special case can be found from the asymptotic theory of the EDF, or more

specifically of the function
v, (@) = /n(F (z)-z) ,

where Fn(z) is the EDF of n uniform random variables as above. For a

modern treatment of the empirical process given by yn(z) see Durbin (1973a,

1973b). When 6 contains unknown components, the z; given by the transfor-
rnation (a) sbove, when an estimate é replaces 9, will not be ordered uniform
random variables and the distribution theory of A?, as for all other

EDF statistics, becomes substantially more difficult. In general, the
distribution of A?, and of other EDF statistics, will depend on n and

also on the values of the unknown parameters.



Fortunately, an important simplification occurs if unknown components
of 6 are location and scale parameters only; then the distribution of
each EDF statlstic, with an appropriate estimate for 6, will depend on
the distribution tested, but not on the specific values of the unknown
parameters. Thus for the test for the normal distribution, for example,
with unknown p and 02, only one set of tables would be needed, of
percentage points for each n. This simplification makes it worthwhile
to calculate the asymptotic theory for A? and other EDF statistics,
and this has been done for the normal case and the exponential case by
Stephens (1974, 1976) and Durbin, Knott and Taylor (1975). Stephens,
from Monte Carlo studies to find the distributions of EDF statistics
for finite n, has calculated modifications of the bésic statistics;
these are functions of the statistic and of n which can be used with
only the asymptotic percentage points. Thus only one line of percent-
age points is needed to make the test. The technique is set out
below. Stephens (1977, 1978) has also done similar distribution theory
to provide tests for the extreme value distribution (these can be used
for the Weibull distribution also) and for the logistic distribution.
Pettitt and Stephens (1976) have given tests for the Gamma distribution
with unknown scale parameter but known shape parameter. From all these
results, we set out the technique for goodness-of-fit testing as it

applies to A?.

Slc General procedure for any distribution with unknown location or

scale parameter.

The first step in testing goodness-of-fit for any of these distribu-

tions is to estimate the unknown parameters. This should be done by
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maximum likelihood, for the modifications and asymptotic theory to hold.
[a)

Suppose that 6 is the vector of parameters, with any unknown parameters

estimated as above. The steps continue as follows:

A
(a) Calculate zZ; = F(x(i);e), i=1,...50 .
(b) Calculate 2% from the formula (2) above.
(c) Modify A2 by the formula in the appropriate table below, and

compare with the line of percentage points given.

6. Tests for different distributions.

It is worthwhile to set forth the practical details of these calcula-

tions, for each distribution separately.

6.1. Tests for the normal distribution. We here distinguish three cases:

- 2
Case 1: The mean p is unknown and is estimated by x, but o is known;
Case 2: The mean ¢ is known, and ¢° 1is estimated by Zi(xi—u)g/n(= si, say);
Case 3: Both parameters are unknown and are estimated by x and

SEas 5 (xi-;?)g/ (n-1).

For these cases the calculation of zi is done in two stages. TFirst

wi is found from

; = =5 (Case 3);

x,. -E X, . _p. X 8 "'}_{.
W, = _1) (Case 1); w, = —a) (Case 2); w (£)
i o 1 S1

then N is the cumulative probability of a standard normal distribution,
to the value W found from tables or computer routines. The value of
A? is then calculated as described in Section 2. To make the test use the

modification and percentage points given in Table 2, for the appropriate case.

6



Tllustration. The following value of men's weights in pounds, first

given by Snedecor, were used by Shapiro and Wilk [17] as an illustration
of atest for normality: 148, 154, 158, 160, 161, 162, 166, 170, 182,
195, 236. The mean is 172 and the standard deviation 24.95. For a test
for normality (Case 3), the values of w, begin w = (148-172)/24.95 =
-0.962, and the corresponding z, is, from tables, 0.168. When all
the zi have been found, the formula in Section 2 gives A? =0.947.

Now to make the test, the modification in Table 2 first giVes

A" - Ag(l.O +0.75/11.0 +2.25/121.0) = IS (1.0868) = 1.029 ;

when this value is compared with the percentage points in Table 2, for Case 3,

the sample is seen to be significant at approximately the 1 percent level.

6.2. Tests for the exponential distribution. The distribution tested

is F(x) = l-exp(1-x/B), x > 0, discribed as Exp(x,B), with B an
unknown positive constant. Maximum likelihood gives é = E} so that zs
are found from z, = l-exp(-x(i)/g), i=1,e..,n. A? is calculated as
in Section 2, modified to give A% by the formula in Table 3, and A%
is compared with the percentage points in Table 3.

For the more general exponential distribution given by
F(x) = l-exp(-(x¢)/B), x>, vhen both @ and P are unknown, a
convenient property of the distribution may be used to return the test
situation to the case just described above. The distribution
y(i) =X(i+l)-x(l) is made, for i =1,...,n-1; the n-1 wvalues
of V(i) are then used to test that they come from Exp(y;B) as
just described. The substitution to y(i) reduces the sample size
by one, but eliminates & very straightforwardly.

T



6.3. Tests for the extreme value distribution. The distribution tested

is here TF(x;0) = expl-exp{-(x-0)/B)}], (o < x <), with o = (@,B);
o and P are constants, B positive. As for the normal distribution

we distinguish three cases:

Case 1: P 1is known and & is estimated;
Case 2: O 1is known and B is estimated;

Case 3: O and B are both unknown, and must be estimated.

Maxtimum likelihood estimates of & and B are given by solving

equations:

B = mx /e (mx exp(x,/B))/ (5 ex (-5, /B)], G = £ Logls, exp(x,/B)/m).

A
The first equation is solved iteratively, and then & can be found. In

A A
Case 1, B 1is known; then P replaced B in . 1In case 2, @ is

A
known; suppose then that y = xi—a,B is given by solving

/

é = {ijj-zjyjexp(-yj/é)}/n .

These are then used in F(x36) to give z; and hence A?. The

modifications and percentage points for the different Cases are

given in Teble k.

67h. Tests for the Weibull distribution. The distribution tested, in its

most general form, is



F(x;0) = 1-expl-{(x2)/B} ], x>a), )

with 6 = (@,B,7); B and 7y must be positive. When €@ is known,
the substitution Y = -In(X<*) gives, for the distribution function
for Y, F(y) = expl-exp(-(y<x')/B'}], (y >Qa'), where B' =1/y
and Q' = -1n B, so that Y has the extreme value distribution
considered above. A test for the Weibull distribution, with & known

but B, y unknown therefore can be made as follows:
7 = - -Oé i = * o .
(a) PFind Y1) ln(x(n+l-i) ), i=1,...5n

(b) Test that i) is a sample (now placed is ascending order by
step (a)) from the extreme value distribution with two unknown parameters,
as described in Section 6.3, Case 3.

Note also that if, in addition to @, 7 is known in (3), the
substitution Y = -1In(X<®) gives an extreme-value distribution for Y
with scale parameter P! now known (Case 1 of Section 6.3); If O and
B are both known in (3), the substitution gives an extreme-value
distribution for Y with location parameter Q! knoﬁn (Case 2 of

Section 6.3)

6.5. Tests for the logistic distribution. The distribution tested is

F(x;0) = [1+expl-x0)/8}]™Y, (x >a), with o = @,B); Q,B are
constants, with P positive. Again t hree cases are distinguished
(Stephens, 1979):

Case 1: P is known, and @ must be estimated;

Case 2: @ is known, and B must be estimated;

Case 5: Both G and B are unknown and must be estimated.

9



Maximum likelihood estimates are given for Case 3 by the equations:

Zi[l+exp{(xi-&)/§}]_l - n/2

xi-& 1 - expf{ (Xi'&)/é}

5.

1 )= -n.

B 1+ expl (xi-& )/B)

These may be solved iteratively, using, for example, x and s¢3 /x

as starting estimates of & and B. In Case 1, only the first equation
is needed, with P replacing é\, and in Case 2 only the second
equation is used, with & ©replacing &. In the transformation

A A
7 =F(x(i);5), the estimates & and B are used in é\ as necessary,

i
and £ is calculated from the formula (2). The modification to

*x
A, and the percentage points of A" are given in Table 5,

6.6. Tests for the Gamma distribution with known shape parameter.

The density under test is f(x;0)={T (m)Bm}-l 1 e-X/B, x > 0,

and the distribution is F(x;0) = jg: f(t;0)dt. The parameter vector

6 = (m,f) contains m as shape parameter and B as scale parameter;
note that the test involving an unknown location parameter is not
considered. In the test which follow, we assume m is known; B is

then estimated by B = m/x, where X is the sample mean. Estimated
density f(m;é\) is f(m;6) above with g replaceing B, and F(x;é‘)

is defined in a similar way. Then for the goodness-of-fit test, values

z, are calculated from z, = F(x(i)gé\), and A2 calculded as in Section 2.
The modified form A*, and tables of percentage points for A*, are given

for various m in Table &,
10



7. Power of the Anderson-Darling Statistic.

As was described in the introduction, the Anderson-Darling
statistic A? gives weight to observations in the tails of the
distribution tested, whereas other statistics sometimes have the
effect of giving less importance to these observations. A? can
therefore be expected to be powerful in detecting alternatives which
have high probability of giving observations in the tails. Several
studies have been made, for example, on tests for the uniform distri-
bution with limits at O and 1. This is the distribution of the z;
in Section 2, in the Case O situation where the tested distribution
is completely specified. The type of alternative to uniformity generally
considered has distribution function F(x) = £ or F(x) = 1-(1-x)k,
0<x<1 with k > 0. These distributions produce points which are
close to 1 or close to O respectively. Simple modifications of
the distributions will produce densities with a peak at 0.5, or with
the minimum valueat 0.5 and high values in either tail. There is
generally a clear difference in behavior of EDF statistics in detecting
these alternatives. (Stephens, 197k; Quesenberry and Miller, 1977;

Locke and Spurrier, 1978). The statistic A2 will detect alternatives
which produce observations towards O or 1, but other statistics of
the EDF class are more suitable for alternatives which produce a cluster
near 0.5 (Stephens, 1974).

In the important situations where parameters must be estimated, the
differences in powers of the EDF statistic appear to level out; the

opportunity to estimate parameters means that F(X;é) is brought close

11



to the EDF of the sample, and the zg values of Section 2 are super-
uniform i.e., more regular than a genuine uniform sample. Even with an
alternative distribution to the null, the zs do not take very extreme
departures from uniformity. In these circumstances the powers of the
various EDF statistics are not so different among themselves as they
are for the Case O situation; see, e.g., tests for normality reported
in Stephens (1974). Nevertheless, because of the importance it gives
observations in the tails, A? appears overall to be an effective EDF
statistics in these situations. It compares very favorably with
statistics also devised for testing for special distributions, e.g. the
Shapiro~Wilk statistics for testing normality, or exponentiality
(Shapiro and Wilk, 1965, 1972; Stephens, 1974, 1978). The statistic
A? has the merit of being easy to calculate, and, using the modifica-~
tions, easy to apply with only one line of percentage points for each

test situation.

8. Related Topics.

This article has been concerned with the use of A? for testing
goodness~of-fit of one sample, for a variety of distributions. There
occur problems in which several samples, usually of small size, are
available, and one wishes to combine the information in those samples
to make an overall goodness~of-fit teét. Pettitt (1577) has provided
tables from which one can obtain the significance level p; 5 1=1,...,k,
of k such tests, in the Case 3 situation of a test for the normal

distribution (Section 6.1 above). The values p; are then combined

using Fisher's well known method.

12



Pettitt (1976) has also given a two sample version of the Anderson-
Darling statistic; like the two sample versions of other EDF statistics,
it is essentially a rank test. Pettitt adds some asymptotic power
comparisons with other two sample rank tests, which show that A°

compares very favorably.

13
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- :

Michael A. Steghens
ABSTRACT

The 'Anderson-D.arling statistic Ae is a goodness-~of-fit statistic,
based on the empirical distribution function. TIts asymptotic distribution
can t;e found for testing many importa.nt.distributions when unknown
parameters must be estimated from the data. Furthermore, A2 can be
easily adapted so that only the asymptotic pdin’cs are neéded for testing
purposes. Ae also is easy to ca.lculate,'and has overall good power
préperties. Thé report gives a review of .Ae and tables for testing
the following distributions — normal, exponential, gamma, extreme-~value

and Weibull, and logistic; points are given also for testing any completely

specified continuous distribution.
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